首页> 外文OA文献 >Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison
【2h】

Numerical approximations for population growth model by Rational Chebyshev and Hermite Functions collocation approach: A comparison

机译:理性人口增长模型的数值逼近   Chebyshev和Hermite函数搭配方法:比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper aims to compare rational Chebyshev (RC) and Hermite functions (HF)collocation approach to solve the Volterra's model for population growth of aspecies within a closed system. This model is a nonlinear integro-differentialequation where the integral term represents the effect of toxin. This approachis based on orthogonal functions which will be defined. The collocation methodreduces the solution of this problem to the solution of a system of algebraicequations. We also compare these methods with some other numerical results andshow that the present approach is applicable for solving nonlinearintegro-differential equations.
机译:本文旨在比较有理Chebyshev(RC)和Hermite函数(HF)配置方法,以解决封闭系统中Volterra种群种群增长的模型。该模型是非线性积分微分方程,其中积分项代表毒素的作用。该方法基于将要定义的正交函数。搭配方法将这个问题的解决方案简化为代数方程组的解决方案。我们还将这些方法与其他一些数值结果进行了比较,并表明该方法适用于求解非线性积分微分方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号